

Procesadores Intel

Arquitectura de Computadoras

Roberto Yair Tellez Luna No. Control: 19051218

Intel Pentium

El primer Pentium se lanzó al mercado el 22 de marzo de 1993, con velocidades iniciales de 60 y 66 MHz, 3.100.000 transistores, caché interno de 8 KiB para datos y 8 KiB para instrucciones; sucediendo al procesador Intel 80486. Intel no lo llamó 586 debido a que no es posible registrar una marca compuesta solamente de números. Pentium también fue conocido por su nombre clave P54C. Se comercializó en velocidades entre 60 y 200 MHz, con velocidad de bus de 50, 60 y 66 MHz. Las versiones que incluían instrucciones MMX no solo brindaban al usuario un mejor manejo de aplicaciones multimedia, como por ejemplo, la lectura de películas en DVD sino que se ofrecían en velocidades de hasta 233 MHz, incluyendo una versión de 200 MHz y la más básica proporcionaba unos 166 MHz de reloj.

Intel Pentium Pro

El Pentium Pro estaba basado en el entonces nuevo núcleo P6. Utilizaba el Socket 8, en lugar del Socket 5 o 7 de los Pentium de la época. Las características del núcleo del P6 era la ejecución fuera de orden, ejecución especulativa y una tubería adicional para instrucciones sencillas. La ejecución especulativa (era la ejecución provisional de código después de un salto que no se sabía si iba a ser realizado), incrementaba considerablemente el fallo de despreciar un salto, y el Pentium Pro en aquel entonces usaba un algoritmo de predicción de saltos más sofisticado que el Pentium. Por la misma razón el Pentium Pro también introducía una instrucción de movimiento condicional (llamado cmov) que en alguno de los casos también podía ser usada para evitar la necesidad de una instrucción de salto. El rendimiento del código de 32 bits era excelente, pero el Pentium Pro a menudo iba más despacio que un Pentium cuando ejecutaba código o sistemas operativos de 16 bits.

El Pentium Pro al principio tenía una caché desde 256 KiB hasta 512 KiB en el encapsulado, hasta la versión de 1 MiB introducida posteriormente. Todas las versiones eran caras, particularmente aquellas que tenían más de 256 KiB de caché. Los planes de la caché integrada en el mismo encapsulado eran únicos. El procesador y la caché estaban en núcleos distintos en el mismo encapsulado y conectados estrechamente por un bus rápido.

Intel Pentium II

Los cambios fundamentales respecto a este último fueron mejorar el rendimiento en la ejecución de código de 16 bits, añadir el conjunto de instrucciones MMX y eliminar la memoria caché de segundo nivel del núcleo del procesador, colocándola en una tarjeta de circuito impreso junto a este. El Pentium II se comercializó en versiones que funcionaban a una frecuencia de reloj de entre 166 y 450 MHz. La velocidad de bus era originalmente de 66 MHz, pero en las versiones a partir de los 333 MHz se aumentó a 100 MHz.

Poseía 32 KiB de memoria caché de primer nivel repartida en 16 KiB para datos y otros 16 KiB para instrucciones. La caché de segundo nivel era de 512 KiB y trabajaba a la mitad de la frecuencia del procesador, al contrario que en el Pentium Pro, que funcionaba a la misma frecuencia. Las primeras versiones del TagRam, únicamente podían direccionar hasta 512MB de memoria principal de forma cacheada, posteriormente hasta 4GB, aún pudiendo direccionar más de 512 MB de memoria física en las primeras versiones.

Como novedad respecto al resto de procesadores de la época, el Pentium II se presentaba en un encapsulado SECC, con forma de cartucho. El cambio de formato de encapsulado se hizo para mejorar la disipación de calor. Este cartucho se conecta a la placa base de los equipos mediante una ranura Slot 1.

El Pentium II integra 7,5 millones de transistores.

Intel Pentium III

Existían tres modelos del Pentium III:

Katmai:

Los primeros modelos tenían velocidades de 450 y 500 MHz. El 17 de mayo de 1999 se introdujo el modelo de 550 MHz y el 2 de agosto del mismo año el de 600 MHz. Posteriormente (antes de la salida del Coppermine), salieron versiones de 133 MHz de Bus. Coppermine:

Esta versión tenía memoria caché L2 de 256 KiB integrada, lo cual mejoró significativamente el rendimiento en comparación con Katmai. Estaba construido con un proceso de 180 nanómetros. El 25 de octubre de 1999, se empezaron a vender los microprocesadores de 500, 533, 550, 600, 650, 667, 700 y 733 MHz. Entre diciembre de 1999 y mayo de 2000, Intel lanzó los modelos operando a 750, 800, 850, 866, 933 y 1000 MHz.junto con ambos slots.

Tualatin:

Los Tualatin tenían un buen desempeño, especialmente los modelos con 512 KiB de caché L2 (llamados Pentium III-S). La Serie III-S estaba enfocada al mercado de servidores. Entre el 2001 y los primeros meses del 2002, Intel introdujo microprocesadores Tualatin a velocidades de 1,13, 1,2, 1,26 y 1,4 GHz, pero tenían el problema de que las placas comunes de aquel entonces (Slot 1 y Socket 370) no eran todas compatibles con los Tualatin.

Intel Pentium IV

El Pentium 4 original, denominado Willamette, trabajaba a 1,4 y 1,5 GHz; y fue lanzado el 20 de noviembre de 2000.

Se agregó el conjunto de instrucciones x86-64 de 64 bits al tradicional set x86 de 32 bits. Al igual que los Pentium II y Pentium III, el Pentium 4 se comercializa en una versión para equipos de bajo presupuesto (Celeron), y una orientada a servidores de gama alta (Xeon). Modelos de Pentium IV

Willamette: los primeros modelos fueron de 1,3; 1,4; 1,5 GHz. En la primera mitad del 2001, salieron a la venta los modelos de 1,6, 1,7 y 1,8 GHz notablemente superiores a los Pentium III. En agosto, los modelos de 1,9 y 2,0 GHz vieron la luz.

Northwood: en enero de 2002 Intel lanzó al mercado los nuevos Northwood de 2,0 y 2,2 GHz. Esta nueva versión combina un incremento de 256 a 512 KiB en la memoria caché con la transición a la tecnología de producción de 130 nanómetros. Al estar el microprocesador compuesto por transistores más pequeños, podía alcanzar mayores velocidades y a la vez consumir menos energía. El nuevo procesador funcionaba con el Socket 478, el cual se había visto en los últimos modelos de la serie Willamette.

Intel Pentium D

Un procesador Pentium D consiste básicamente en dos chips de Pentium 4 metidos en un solo encapsulado (dos núcleos Prescott para el núcleo Smithfield y dos núcleos Cedar Mill para el núcleo Presler) y comunicados a través del FSB. Fueron fabricados a 90 nm y en su segunda generación de 65 nm.

Existen cinco variantes 8xx del Pentium D:

Pentium D 805, a 2.66 GHz (el único Pentium D con bus frontal [FSB] a 533 MHz)

Pentium D 820, a 2.8 GHz con FSB a 800 MHz

Pentium D 830, a 3.0 GHz con FSB a 800 MHz

Pentium D 840, a 3.2 GHz con FSB a 800 MHz

Pentium D Extreme Edition 840, a 3.2 GHz, con tecnología HyperThreading de Intel y FSB a 800 MHz.

Cada uno de ellos posee dos núcleos Prescott conformando así el core Smithfield, están fabricados en un proceso de 90 nm, con 1 MiB de memoria caché L2 para cada núcleo. Todos los Pentium D incluyen las instrucciones EM64T, que les permite trabajar con datos de 64 bits nativamente e incluyen soporte para la tecnología Bit NX e Intel Viiv. Las placas base que los soportan son las que utilizan los chipsets 101, 102, 945, 946, 965 y 975.

Posteriormente se añadieron otras once variantes del Pentium D, de tipo 9xx:

Pentium D 915, a 2.8 GHz con FSB a 800 MHz Pentium D 920, a 2.8 GHz con FSB a 800 MHz Pentium D 925, a 3.0 GHz con FSB a 800 MHz Pentium D 930, a 3.0 GHz con FSB a 800 MHz Pentium D 935, a 3.2 GHz con FSB a 800 MHz Pentium D 940, a 3.2 GHz con FSB a 800 MHz Pentium D 945, a 3.4 GHz con FSB a 800 MHz Pentium D 950, a 3.4 GHz con FSB a 800 MHz Pentium D 950, a 3.6 Ghz con FSB a 800 MHz Pentium D 960, a 3.6 Ghz con FSB a 800 MHz

Pentium D 955 Extreme Edition, a 3.46 GHz con HyperThreading, un FSB de 1066 MHz y una caché de 2 MiB L2 en cada núcleo.

Pentium D 965 Extreme Edition , a 3.73 GHz con HyperThreading, un FSB de 1066 MHz FSB y caché de 2 MiB L2 en cada núcleo.

Cada uno de ellos posee dos núcleos Cedar Mill, conformando así el core Presler, están fabricados en un proceso de 65 nm con 2 MiB de memoria caché de nivel 2 (L2) para cada núcleo. Todos los 9x5 se les denomina así porque estos no contienen (salvo en la serie Extreme Edition) la tecnología de virtualización Intel VT, por tanto esto los hace más económicos.

Intel Dual Core

Fue diseñado para trabajar en equipos portátiles (Laptops) y en equipos de escritorio (Desktops), permitiendo la ejecución de aplicaciones múltiples a un bajo costo, con un bajo consumo energético y sin sacrificar el desempeño.

		Características								
Modelo	Velocidad	Caché	Bus	Núcleo	Proceso de fabricación (nm)	<u>TDP</u>	Instrucciones	Zócalo	Fecha de lanzamiento	
E2140	1,6 Ghz	1 MiB	800 MHz	Allendale	65nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, EM64T	775	Q2 07	
E2160	1,8 Ghz	1 MiB	800 MHz	Allendale	65nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, EM64T	775	Q3 06	
E2180	2,0 Ghz	1 MiB	800 MHz	Allendale	65nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, EM64T	775	Q3 07	
E2200	2,2 Ghz	1 MiB	800 MHz	Allendale	65nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, EM64T	775	Q4 07	
E2220	2,4 Ghz	1 MiB	800 MHz	Allendale	65nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, EM64T	775	Q1 08	

Características									
Modelo	Velocidad	Caché	Bus	Núcleo	Proceso de fabricación (nm)	<u>TDP</u>	Instrucciones	Zócalo	Fecha de lanzamiento
E5200	2,5 Ghz	2 MiB	800 MHz	Wolfdale	45nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, EM64T	775	Q3 08
E5300	2,6 Ghz	2 MiB	800 MHz	Wolfdale	45nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, EM64T, (VT-x)	775	Q1 08
E5400	2,7 Ghz	2 MiB	800 MHz	Wolfdale	45nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, EM64T, (VT-x)	775	Q1 09
E5500	2,8 Ghz	2 MiB	800 MHz	Wolfdale	45nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, EM64T, VT-x	775	Q2 10
E5700	3,0 Ghz	2 MiB	800 MHz	Wolfdale	45nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, EM64T, VT-x	775	Q3 10
E5800	3,2 Ghz	2 MiB	800 MHz	Wolfdale	45nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, EM64T, VT-x	775	Q4 10
E6300	2,8 Ghz	2 MiB	1066 MHz	Wolfdale	45nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, EM64T, VT-x	775	Q2 09
E6500	2,93 Ghz	2 MiB	1066 MHz	Wolfdale	45nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, EM64T, VT-x	775	Q1 08
E6600	3,06 Ghz	2 MiB	1066 MHz	Wolfdale	45nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, EM64T, VT-x	775	Q1 10
E6700	3,2 Ghz	2 MiB	1066 MHz	Wolfdale	45nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, EM64T, VT-x	775	Q2 10
E6800	3,33 Ghz	2 MiB	1066 MHz	Wolfdale	45nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, EM64T, VT-x	775	Q3 10

					Características				
Modelo	Velocidad	Caché	Bus	Núcleo	Proceso de fabricación (nm)	TDP	Instrucciones	Zócalo	Fecha de lanzamiento
G620	2,6 Ghz	3 MiB	5 GT/s DMI	Sandy Bridge	32nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, SSE 4.1, SSE 4.2, EM64T, VT-x	1155	Q2 11
G630	2,7 Ghz	3 MiB	5 GT/s DMI	Sandy Bridge	32nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, SSE 4.1, SSE 4.2, EM64T, VT-x	1155	Q3 11
G620T	2,2 Ghz	3 MiB	5 GT/s DMI	Sandy Bridge	32nm	35w	MMX, SSE, SSE2, SSE3, SSSE3, SSE 4.1, SSE 4.2, EM64T, VT-x	1155	Q2 11
G630T	2,3 Ghz	3 MiB	5 GT/s DMI	Sandy Bridge	32nm	35w	MMX, SSE, SSE2, SSE3, SSSE3, SSE 4.1, SSE 4.2, EM64T, VT-x	1155	Q3 11
G840	2,8 Ghz	3 MiB	5 GT/s DMI	Sandy Bridge	32nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, SSE 4.1, SSE 4.2, EM64T, VT-x	1155	Q2 11
G850	2,9 Ghz	3 MiB	5 GT/s DMI	Sandy Bridge	32nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, SSE 4.1, SSE 4.2, EM64T, VT-x	1155	Q2 11
G860	3,0 Ghz	3 MiB	5 GT/s DMI	Sandy Bridge	32nm	65w	MMX, SSE, SSE2, SSE3, SSSE3, SSE 4.1, SSE 4.2, EM64T, VT-x	1155	Q3 11

Q

၂

Intel Core !3

Los procesadores Core i3-3xxM se basan en Arrandale , la versión móvil del procesador de escritorio Clarkdale. Son similares a la serie Core i5-4xx pero funcionan a velocidades de reloj más bajas y sin Turbo Boost .

Nombre clave	Marca	Nucleos	Cache L3	Enchufe	TDP	Bus de E /S	
Clarkdale	Core i3		4mb	LGA 1156	73W	Interfaz de medios directa ,	
A was and a	Core i3-3xxM	2	3mb	rPGA-988A	35W	GPU integrada	
Arrandale	Core i3-3xxMU		3mb	BGA-1288	18W		

Intel Core !5

Los procesadores Lynnfield Core i5 tienen una caché L3 de 8 MB, un bus DMI que funciona a 2.5 GT / sy soporte para memoria DDR3-800 / 1066/1333 de doble canal y tienen Hyper-Threading deshabilitado.

Arrandale, los procesadores Core i5 móviles de doble núcleo y su contraparte de escritorio Clarkdale se introdujeron en enero de 2010, junto con los procesadores Core i7-6xx y Core i3-3xx basados en la misma arquitectura. Los procesadores Arrandale tienen capacidad de gráficos integrados. Core i3-3xx no es compatible con Turbo Boost, el caché L3 en los procesadores Core i5-5xx se reduce a 3 MB, mientras que el Core i5-6xx usa el caché completo.

	Nombre clave	Marca	Nucleos	Cache L3	Enchufe	TDP	Bus de E /S	
	lf: a l al	Core i5-7xx	4	8mb		P5W		
)	Lynnfield	Core i5-7xxs	4	OIIID	LGA 1156	82W	Interfaz de medios directa	
7		Core i5-6xx		4mb		73W - 87W		
	Clarkdale					35W		
l		Core i5-5xxM	2	3mb	rPGA-988A		Interfaz de medios directa, GPU	
1	A www.alada	Core i5-4xxM	_		BGA-1288		integrada	
ı	Arrandale	Core i5-5xxUM				18W		
		Core i5-4xxUM						

Intel Core !7

Intel Core i7 como Intel marca se aplica a varias familias de escritorio y portátiles de 64 bits x86-64 procesadores utilizando el Nehalem, Westmere, Sandy Bridge, Ivy Bridge, Haswell, Broadwell, Skylake y Kaby Lake microarquitectura. La marca Core i7 se dirige al mercado empresarial y de consumo de alto nivel para computadoras de escritorio y portátiles, [59] y se distingue del Core i3 (consumidor de nivel de entrada), Core i5 (consumidor principal) y Xeon. (servidor y estación de trabajo).

						<u></u>	
Nombre clave	Marca	Nucleos	Cache L3	Enchufe	TDP	Proceso	
Gulftown	Core i7-9xxX Extreme Edition	6	12mb			32 millas náuticas	
	Core i7-970						
Bloomfield	Core i7-9xx Extreme Edition			LGA 1366	130W	45 millas náuticas	
	Core i7-9xx (excepto Core i7-970 / 980)		8mb				
I (* . I.)	Core i7-8xx			LGA 1156	95W		
Lynnfield	Core i7-8xxS	4					
	Core i7-9xxXM Edición extrema				82W		
Clarksfield	Core i7-8xxQM			rPGA-988A	55W		
	Core i7-7xxQM		6mb	11 04-7004	45W		
	Core i7-6xxM		4mb		35W	32 millas náuticas	
Arrandale	Core i7-6xxLM	2		BGA-1288	25W		
	Core i7-6xxUM				18W		

Microarquitectura Skylake

Skylake es la microarquitectura de procesador Core de sexta generación y se lanzó en agosto de 2015. Siendo el sucesor de la línea Broadwell, es un rediseño que utiliza la misma tecnología de proceso de fabricación de 14 nm; sin embargo, el rediseño tiene un mejor rendimiento de CPU y GPU y un menor consumo de energía. Intel también deshabilitó el overclocking de los procesadores que no son K.

Procesadores Intel de Escritorio

Marca	Modelo	Nucelos/ Hilos	Cache L3	GPU	Enchufe	TDP	Proceso	Bus de E/S	Fecha de lanzamiento
	6700K					91W			Agosto 2015
	6700			HD 530		65W		Interfaz de medios directa , GPU integrada	Septiembre
Core i7	6700T	4/8	8MB			35W	14 millas náuticas		2015
	6785R			Iris Pro 580	LGA 1151	65W			Mayo 2016
	6600K		6MB	HD 530		91W			
	6600	4/4							Septiembre
	6500								2015
	6400					65W			
Core i5	6402P			HD 510					Diciembre 2015
	6X0R								Junio 2016
	6XX0T			GD 530		35W			Septiembre 201 <i>5</i>

Procesadores Intel de Escritorio

Marca	Modelo	Nucelos/ Hilos	Cache L3	GPU	Enchufe	TDP	Proceso	Bus de E/S	Fecha de lanzamiento
	6320		4MB	HD 530	LGA	51W	14 milla	Interfaz de medios directa , GPU integrada	Septiembre 201 <i>5</i>
	6300					31 77			
	6300T					35W			
Core i3	6100	2/4		HD 530	1151	51W	náuticas		
	6100T		ЗМВ	пD 330		35W			
	6098P			HD 510		54W			Diciembre 201 <i>5</i>

Procesadores Intel de Escritorio 7º Generación

Marca	Modelo	Nucelos/Hil os	Cache L3	Enchufe	TDP	Proceso	Bus de E/S
	7980XE	18/36		LGA 2066		14 millas náuticas	Interfaz de medios directa
	7960X	16/32					
Core i9	7940X	14/28					
	7920X	24/12					
	7900X	20/10	13.75MB		140W		
Coro :7	7820X	16/8	11MB				
Core i7	7800X	6/12	8.25MB				

